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Abstract  12 

Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model 13 

(GCMs) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-14 

Model Ensemble (NMME) project facilitates the development of such multi-model forecasting 15 

schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and 16 

precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs 17 

(CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all 18 

forecast months and lead times, for four broad climatic European regions: Temperate, 19 

Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches 20 

to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), 21 

Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model 22 

members (BU-94), BU of the principal components of the eight single-model ensembles (BU-23 

PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess 24 

the forecasting skill of these five multi-models and evaluate their ability to predict some of the 25 

costliest historical droughts and floods in recent decades. Results indicate that the simplest 26 

approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-27 

PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, 28 

but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA 29 

models tend to produce lower conditional biases than the BU models and have more 30 

homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 31 

NMME model members does not present significant benefits over the use of the 8 single model 32 

ensembles. These findings may provide valuable insights for the development of skillful, 33 

operational multi-model forecasting systems. 34 
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1. Introduction 38 

In recent decades there has been growing interest in leveraging the skill of forecasts from 39 

multiple Global Circulation Models (GCMs) to improve climate predictions (e.g., Hagedorn et 40 

al., 2005; Weigel et al., 2008). Early multi-model projects such as the Development of a 41 

European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) or 42 

the Ensemble-Based Predictions of Climate Changes and their impacts (ENSEMBLES) project 43 

provided GCM hindcasts (i.e., model forecasts that are produced by running the models in the 44 

past) to facilitate the development of multi-model weighting schemes based on the strengths and 45 

weaknesses of the different models. More recent international schemes like the North American 46 

Multi-Model Ensemble (NMME) and the operational European Seasonal-to-Interannual 47 

Prediction (EuroSIP) projects also provide near-real time forecasts to allow the development of 48 

multi-model forecasting applications (Kirtman et al., 2014). 49 

The NMME is a collaborative forecasting system or ‘prediction experiment’ that began in 2011 50 

(Kirtman et al., 2014), to which U.S. (NOAA/NCEP, NOAA/GFDL, IRI, NCAR, NASA) and 51 

Canadian (CMC) modeling centers (see Table 1 for explanation of acronyms) contribute real 52 

time seasonal-to-interannual predictions. The NMME is based on the recognition that multi-53 

model ensemble approaches generate better forecasts than any single model ensemble (e.g., 54 

Doblas-Reyes et al., 2005, Hagedorn et al., 2005, Kirtman and Min, 2009).  55 

Before developing any multi-model ensembles, an important first step has been the evaluation of 56 

NMME model skill to understand the strengths and weaknesses of the different GCMs. Because 57 

of the large volumes of data that are produced within the NMME (Table 1), global-scale studies 58 

have focused on the evaluation of model skill at specific lead times (Becker et al., 2014; Mo and 59 

Lettenmaier, 2014), or for specific seasons (Wang, 2014), models (Jia et al., 2015; Saha et al., 60 

2014), or climate quantities (Barnston and Lyon, 2016; Mo and Lyon, 2015). Regional 61 

evaluations of NMME forecast skill have focused principally on North America (Infanti and 62 

Kirtman, 2016), the United States (Misra and Li, 2014; Roundy et al., 2015; Slater et al., 2017), 63 

the southeastern United States (Infanti and Kirtman, 2014), but also China (Ma et al., 2015a, 64 

2015b), Iran (Shirvani and Landman, 2016) and South Asia (Sikder et al., 2015). Thus, most of 65 

the effort of the NMME model skill evaluation has been over the USA, and far less attention has 66 
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been paid to Europe, with some exceptions, such as Thober et al. (2015), who used NMME 67 

forecasts as input for the mesoscale hydrologic model (mHM). 68 

Existing NMME multi-model approaches have mostly used equal weighting schemes, giving the 69 

same weight to each single-model ensemble (i.e., the mean of each model’s members) or to all of 70 

the individual members, irrespective of their skill (Becker et al., 2014; Hagedorn et al., 2005; 71 

Slater et al., 2017; Tian et al., 2014). The predictive skill of these equally weighted multi-models 72 

tends to be greater than or equal to the skill of the best model within the ensemble (Becker et al., 73 

2014; DelSole and Tippett, 2014; Hagedorn et al., 2005; Ma et al., 2015a; Slater et al., 2017; 74 

Thober et al., 2015; Wood et al., 2015). Generally, multi-model ensembles can outperform 75 

single-model ensembles when the individual models are overconfident, so the multi-model 76 

widens the ensemble spread and reduces the average ensemble-mean error (Weigel et al., 2008). 77 

However, the equal weights approach has limitations. First, it presumes that the models are 78 

independent, and so it accentuates the “region of model agreement” (Olson et al., 2016), 79 

assuming that the model biases will cancel out, and that the average forecast will be more skillful 80 

than that of any single-model ensemble (Knutti et al., 2010). If the models are not independent, 81 

the multi-model will over-strengthen the forecasts issued by similar models (Olson et al., 2016). 82 

This is particularly true in the case of the NMME, where many of the participating models are 83 

different versions of similar models, e.g., CCSM3 and CCSM4, CanCM3 and CanCM4, or 84 

GFDL2.1 and FLORb01 (Table 1), so the forecasts exhibit notable similarities (e.g., Slater et al., 85 

2017). Another problem is that of reproducing the correct dispersion (Raftery et al., 2005): 86 

single-model ensembles are likely to be underdispersive (Arritt and Rummukainen, 2011), as are 87 

multi-model ensembles when the models are correlated among themselves. Multi-model 88 

averages are thus likely to impoverish the forecast signal (Knutti et al., 2010).  89 

Overall, therefore, two of the main challenges in developing a solid multi-model approach are (1) 90 

to define an objective procedure that weights the contribution of each model based on historical 91 

performance, and (2) to eliminate the biases arising from models that perform similarly, because 92 

consolidation of information in multi-model approaches can only be better than the best 93 

individual model if the information is independent (Van den Dool, 2007).   94 

To address the first of these aims, we use Bayesian updating (BU). Various approaches can be 95 
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used to post-process ensemble forecasts based on their historical performance (e.g., Krishnamurti 96 

et al., 1999; Rajagopalan et al., 2002; Scheuerer and Büermann, 2014), but Bayesian schemes 97 

have gained increasing attention in recent years (e.g., Coelho et al. 2004; Hodyss et al., 2016) as 98 

they generally improve the sharpness of the forecasts and can be updated as new information 99 

becomes available. For example, Madadgar et al. (2016) developed a multivariate Bayesian 100 

model based on copula functions to predict drought as a function of atmosphere-ocean 101 

teleconnections and showed that the multi-model Bayesian forecasts performed considerably 102 

better than the initial NMME forecasts. In BU, each individual forecast adjusts the prior 103 

probability of the forecast variable, defined by the sample climatology of historical observations 104 

(Bradley et al., 2015). By expressing the observed values of the historic record in terms of their 105 

likelihood, given the forecasts made by each model, Bayesian approaches take full advantage of 106 

the historical record length. Thus, they circumvent one of the principal limitations of GCM 107 

forecasts, which is the shortness of the hindcast and forecast records.  108 

To address the second challenge and reduce the multicollinearity and biases that may arise from 109 

including similar models within the ensemble, we propose a method based on principal 110 

components analysis (PCA). Instead of applying the BU approach to the single-model forecasts 111 

directly, we first compute the principal components among the available models, before 112 

conducting BU on the principal components. Thus, we aim to reduce any biases arising from 113 

model similarities and to simplify the Bayesian methodology by pooling together all of the 114 

single-model ensemble hindcasts (or the individual model member hindcasts).  115 

This paper therefore describes an experiment to leverage the strengths of eight NMME models 116 

over the full range of forecast months and lead times by optimizing the available 117 

hindcast/forecast data following an approach based on BU of the climate forecasts. We aim to 118 

answer the following questions:  119 

1) What is the skill of eight state-of-the-art NMME single-model ensembles in forecasting 120 

precipitation and temperature across Europe? Are they able to forecast extended periods 121 

of extreme temperature and extreme precipitation?  122 

2) Can we develop a Bayesian approach for multi-model forecasting that leverages the 123 

strengths of the individual models, and reduces any biases and errors? 124 
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3) Does the Bayesian multi-model forecast improve when we use all of the 94 individual 125 

model members, instead of the eight single-model ensembles (based on mean values of 126 

the corresponding members)? 127 

The remainder of the paper is organized as follows. Section 2 describes the data and the 128 

European regions used in the study. Section 3 describes the forecast verification metrics, the BU, 129 

the principal components approach, and the diagnosis of eight extreme precipitation and 130 

temperature events. Section 4 describes and discusses the skill of the eight single-model 131 

ensembles, the EW-8 model, the BU models, the BU-PCA models, and compares the skill of all 132 

the multi-models in forecasting extreme events. Given the imperfect nature of the models and 133 

their strengths and weaknesses over different forecast months, lead times, and regions, Section 5 134 

concludes by comparing the multi-models and discussing the best procedures for producing 135 

multi-model forecasts with optimized skill over longer lead times. 136 

2 Data 137 

2.1 NMME forecast temperature and precipitation data 138 

The models and variables that are made available in the NMME are centralized in online 139 

repositories. We downloaded the data from IRI/Lamont Doherty Earth Observatory (LDEO) 140 

Climate Data Library (http://iridl.ldeo.columbia.edu/) in a netCDF format, on regular 1°×1° 141 

grids. We focus on eight single model ensembles, referred to as CCSM3, CCSM4, CanCM3, 142 

CanCM4, CFSv2, GEOS5, GFDL2.1 and FLORb01, and the 94 members of those models (see 143 

Table 1 for model description and acronym definitions). The models have between 6 and 24 144 

members each, and the forecasts are produced for varying lead times, ranging from 0.5 to 11.5 145 

months (see caption of Table 1 for a description of lead times).  146 

Temperature and precipitation data were obtained for all model members and for all lead times, 147 

and tailored to the boundaries shown in Figure 1. The hindcast/forecast data for CFSv2, 148 

CanCM3 and CanCM4 were downloaded separately and combined. The netCDF files are five-149 

dimensional, with longitude, latitude, lead, member, and forecast reference time. 150 

2.2 Reference temperature and precipitation data and region outline 151 
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As reference data, we used observed temperature and precipitation data (E-OBS) from the EU-152 

FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) (Haylock et al., 2008; Hewitt 153 

and Griggs, 2004), which are provided through the ECA&D project (http://www.ecad.eu). We 154 

downloaded E-OBS v13 (June 2016 release) at a 0.25 × 0.25 degree resolution, and aggregated 155 

the data to 1°×1° grids to match the resolution and spatial extent of the NMME data. We then 156 

defined four European regions based on Köppen climate categories and tailored the region 157 

outlines to include only the grid cells where both NMME and E-OBS data were available 158 

(Figure 1). 159 

3 Methods 160 

3.1 Forecast verification 161 

Forecast skill can be quantified using a variety of approaches. Here, we use the mean square 162 

error (MSE) skill score SSMSE (e.g., Hashino et al., 2007) to assess the accuracy of the forecast 163 

relative to observed temperature and precipitation, because it allows us to evaluate the 164 

conditional and unconditional biases in the models separately. The MSE skill score can be 165 

written as 166 

2
1

x

MSE

MSE
SS


 , (1) 167 

where x represents the standard deviation of the observations. If the forecasts are probabilistic, 168 

rather than deterministic, then the SSMSE is equivalent to a Brier skill score (Brier, 1950). A skill 169 

score of 1 indicates a perfect forecast; a skill score of zero indicates that the forecast accuracy is 170 

the same as using the long-term climatological averages; and a skill of less than zero indicates 171 

that the skill is below that of the climatology. The value of SSMSE can be decomposed into three 172 

components (Murphy and Winkler, 1992) 173 
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 , (2) 174 

where fx is the Pearson correlation coefficient between observations and forecasts and quantifies 175 

the degree of linear dependence between the two; f and x are the forecast and observation 176 

means, respectively, and f is the standard deviation of the forecasts. Based on this 177 



Revised manuscript submitted to Journal of Hydrology 

8 

 

decomposition, the coefficient of determination (denoted by R
2
) reflects the forecast accuracy in 178 

the absence of biases, and is referred to as the potential skill (PS), or ‘inflated’ skill that might be 179 

achieved in the absence of biases. The second term in the right side of equation (2) quantifies the 180 

conditional biases and it is referred to as the slope reliability (SREL). The last term quantifies the 181 

unconditional biases and it is referred to as the standardized mean error (SME). 182 

Forecast verification using the MSE skill score and its decomposition in equation (2) produces a 183 

more realistic diagnostic of the forecast skill compared to taking the correlation coefficient at 184 

face value. The decomposition of the skill in different sources of bias provides information on 185 

model strengths and weaknesses, which may be useful for model developers and/or forecast 186 

users. In general, the unconditional biases (large SME) can easily be removed with bias-187 

correction methods (Hashino et al., 2007) while the conditional biases (large SREL) tend to 188 

require more sophisticated calibration. Any forecasts with low PS will have limited 189 

predictability, even if the biases are eliminated.  190 

3.2. Bayesian updating (BU) 191 

Post-processing of ensemble forecasts is a common approach for removing forecast biases and 192 

reducing model error (National Academy of Sciences, 2006). BU of climate model forecasts is 193 

an implementation of Bayes’ theorem, in which the climatological probability distribution of a 194 

forecast variable, Y (e.g., precipitation or temperature), can be updated using newly-available 195 

information (e.g., the precipitation or temperature NMME forecasts).  196 

Bayesian approaches were successfully introduced as part of the DEMETER project to enhance 197 

sea surface temperature and precipitation forecasts (Coelho 2004; Luo et al., 2007). In 198 

hydrologic forecasting, Bayesian merging has been used to develop a multimodel seasonal 199 

hydrologic ensemble prediction system (Luo and Wood, 2008), to obtain probabilistic 200 

streamflow forecasts (Wang et al., 2013), or to weight the forecasts using a climate index such as 201 

the El Niño-Southern Oscillation or Pacific Decadal Oscillation (Bradley et al., 2015). However, 202 

BU has not yet been implemented in a systematic fashion over large regions to see if it is 203 

possible to enhance NMME precipitation or temperature forecasts. 204 

Here, we implement BU to leverage the forecasting skill of the eight NMME single model-205 
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ensembles or of the 94 individual model members based on their performance for every month of 206 

the year and for every lead time. Before any forecast is made, our best estimate of the probability 207 

of different outcomes is defined by the climatology (i.e., the probability distribution of historical 208 

outcomes), represented here by the prior climatological density function f (y). After a climate 209 

model forecast is issued, the updated (or posterior) density function is given by Bayes' theorem 210 

to be 211 

)(

)()|(
)|(










f

yfyf
yf  , (3) 212 

where f () is the unconditional density of , and f (| y) is the likelihood function. The 213 

posterior density f(y|) describes the conditional distribution of the variable given the climate 214 

model forecast , and therefore represents a probability distribution forecast of the outcome. 215 

Analytical solutions to equation (3) are available when the prior density and the likelihood 216 

function are normally distributed (i.e., Gaussian). Here we apply BU to a data sample (rather 217 

than to density functions). Let {yi, i=1, …, N} represent the historical observations of Y, i.e., a 218 

sample drawn from the prior density f (y). We represent a sample drawn from the posterior 219 

density f(y|) (Smith and Gelfand, 1992) using the likelihood function f (| y). By definition, 220 

the likelihood function f (| y) is the distribution of a given model forecast  conditioned on a 221 

particular outcome y for the same month.  222 

For example, to apply BU to the eight NMME models (or 94 members), we treat each model (or 223 

member) sequentially. Beginning with one model, one month, one lead time, and one region 224 

(e.g., NASA January forecasts at Lead 0.5 in the Atlantic region), we first hypothesize a linear 225 

relationship between the forecasts ( ) and observations (y) across all years (e.g., Luo et al. 2007) 226 

as  227 

  y , (4) 228 

where  and   are the intercept and slope parameters (bias and scaling error in the model), 229 

respectively, and   is the Gaussian residual model error. Using every observation for the given 230 

month (e.g., January E-OBS observations from 1950 to 2015), excluding the actual forecast 231 

observation, we estimate the parameters  and  by linear regression. For any given outcome y, 232 
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the expected value of a corresponding forecast )( y  using a simple linear regression model is 233 

yy  )( . (5) 234 

We assume that the residual model errors   are normally distributed with mean zero and 235 

constant variance  
and can then write the likelihood function f (| y) as a Gaussian density 236 

function 237 
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 . (6) 238 

The likelihood function is then computed for each historical monthly observation yi in the 239 

historical sample (excluding the forecast month) to obtain a weight wi for each observation as 240 
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. (7) 241 

The weight wi represents the likelihood of observing outcome yi given the climate forecast 242 

(Smith and Gelfand, 1992), and the sum of the weights wi is equal to 1. The collection of 243 

weights for a given month (e.g., from 1950 to 2015, minus the forecast year) is therefore 244 

analogous to a discrete probability distribution forecast for the given model (or model member). 245 

In other words, the weights show the likelihood of each discrete historical outcome given the 246 

climate model forecasts. If all the weights are equal (i.e., 1/N), they produce the same 247 

distribution as the prior distribution before BU, so the output is equivalent to a climatology 248 

forecast (i.e., the average historical conditions for the same months) and the model forecast is 249 

automatically ignored. For models with a weak relationship between forecasts and observations, 250 

the weights will be close to 1/N, indicating that each outcome is nearly equally likely. For 251 

models with a strong, significant relationship between forecasts and observations, each historical 252 

outcome yi receives a different weight, and the unequal weighting grows as the PS increases. 253 

Any weights greater than 1/N indicate that the outcome is more likely than the climatology given 254 

the forecast; any weights smaller than 1/N indicate that the outcome is less likely. We repeat this 255 

procedure for each forecast individually.  256 

To combine the eight single-model ensembles (or 94 model members) into a multi-model 257 
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forecast, we apply the BU sequentially to each model, and then combine their weights to produce 258 

a multi-model weight. Assuming that the single-model forecasts are independent (Luo et al. 259 

2007), the multi-model weight *

iw  is the product of the eight model weights for each observation 260 

yi in the historical sample, normalized to produce a set of multi-model weights that sum to 1 261 

(Bradley et al. 2015) 262 

 

8

* 1

8
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jk
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, (8) 263 

where k

iw is the i-th weight for the k-th model. For a given forecast (e.g. January 1982) we have 264 

66 multi-model weights (e.g., one for each historical observation for January from 1950 to 2015, 265 

minus the forecast year). The final multi-model forecast y  is the expected value of the Bayesian 266 

updated probability distribution, defined by the weighted average: 267 

*

1

N

i i

i

y w y


 . (9) 268 

The multi-model forecast weight is thus a normalized product of all the weights for the 269 

individual models. It is important to note that a model with relative weights that are all 1/N (a 270 

climatology forecast) has no effect at all on the multi-model weights; in other words, if a model 271 

has no PS, it is as if the model is automatically ignored. The method, as an application of Bayes’ 272 

theorem, produces bias-corrected ensemble climate forecasts by optimally merging climate 273 

forecasts from multiple models based on their performance for specific months and lead times. 274 

Four of our multi-models are based on BU: (1) BU of the eight single-model ensemble forecasts 275 

(BU-8); (2) BU of the 94 individual model members (BU-94); (3) BU of the principal 276 

components of the eight single-model ensemble forecasts (BU-PCA-8), and (4) BU of the 277 

principal components of the 94 model members (BU-PCA-94). Our rationale for differentiating 278 

between the eight single-model ensembles and the 94 individual model members is to assess 279 

whether the individual members actually do produce an enhanced model forecast in comparison 280 

with the single-model ensembles. This question is important, as the single-model ensemble 281 

forecasts are much faster to prepare and compute for a given region in comparison with the 282 

model members. Thus, if their skill is comparable to that of the members, model forecasts may 283 
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be obtained much faster. 284 

3.3. BU of principal components  285 

In multi-models BU-8 and BU-94, we make the assumption that the errors from the eight single-286 

model ensembles are independent, so the BU is applied sequentially for each model, and the 287 

multi-model forecast weight is a normalized product of all the weights for the single-model 288 

ensembles for every given month and lead time (as described above). As a result, the forecasts 289 

have a tendency to highlight any consensus among the models, regardless of whether or not the 290 

single-model forecasts are correct (e.g., Olson et al., 2016).  291 

Here we attempt to reduce the conditional biases arising from similarities among the single 292 

model ensemble forecasts by developing a second approach based on principal components 293 

analysis (PCA), which is referred to as BU-PCA-8 and BU-PCA-94, respectively. Instead of 294 

computing a linear regression between the model forecasts and observations as described above, 295 

we first pool together the eight (or 94) model forecasts, and conduct a PCA using the ‘prcomp’ 296 

function from the base stats package in the open-source software R (R Core Team and 297 

contributors worldwide, 2016). If one model forecast is missing for a given lead time and month, 298 

then that entire model is removed from the calculation of the components. Additionally, the PCA 299 

must be conducted on complete data, so any month that is missing a forecast (from one or more 300 

models) is excluded from the analysis. The variables are centered and scaled prior to applying 301 

the PCA, and we retain all of the components. The linear relationship is then computed between 302 

the principal components and the observed data, and the BU procedure is applied in the same 303 

manner as before, but using the principal components instead of the single-model ensemble 304 

forecasts.  305 

By implementing the principal components approach before the BU, we no longer have to 306 

assume independence of the single-model ensembles that are used in the weighting scheme. The 307 

BU gives more weight to the model components with high PS, and less to those with low or no 308 

PS, for every month and lead time. This BU-PCA approach is similar to other probability 309 

adjustment procedures (Stedinger and Kim, 2010) and can be thought of as a way of 310 

preconditioning the forecasts to reduce any over confidence arising from model similarity. The 311 

methodology can then be applied to other climate variables beyond precipitation and 312 
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temperature, and the multi-model forecasts can be used as inputs for practical ensemble 313 

forecasting.  314 

Note that for all five multi-models, the maximum number of forecasts (i.e. eight single-model 315 

ensemble forecasts, or 94 individual model member forecasts) is not always used because of the 316 

presence of gaps in the original forecast data. When computing the multi-model forecasts, we use 317 

as many forecasts as are available for the given month or lead time.  318 

3.4. Extreme event diagnosis  319 

To evaluate the skill of the NMME in predicting extremes, we focus on four extreme 320 

precipitation events (August 2002, August 2005, May-June 2010, May-June 2013) and four 321 

extreme temperature events (June-August 2003, June-July 2007, June-July 2010, March 2012), 322 

using the two- or three- month average when the event lasted more than one month. We selected 323 

events that lasted between one and three months to assess how well they were forecast by the 324 

single-model ensembles over multiple lead times, and how well they would have been forecast 325 

using our five multi-model weighting schemes. The events were chosen using the International 326 

Disaster Database from the Centre for Research on the Epidemiology of Disasters (Emergency 327 

Events Database, http://www.emdat.be), which records data on world mass disasters that have 328 

occurred since the beginning of the twentieth century. Using extreme observations to compare 329 

forecasts may not always be an appropriate strategy, as ‘predicting calamity becomes a 330 

worthwhile strategy’, and incorrect conclusions may be drawn (Lerch et al. 2017). Here, 331 

however, we use extreme events solely to draw qualitative conclusions regarding consistency of 332 

forecasts across lead times.  333 

We start by defining the extent of the extreme event using the reference E-OBS data. For every 334 

one degree pixel, we compute the standardized anomaly for the selected season for every year 335 

between 1983 and 2015. The years 1983 to 2015 are retained because not all NMME models 336 

have forecasts before 1983. We plot the seasonal anomaly across the whole of Europe, and select 337 

all of the grid cells where the anomaly was greater than or equal to 1. We did this for every event 338 

with the exception of the Summer 2003 event which covered most of Europe, and where we set a 339 

threshold of 1.5. This threshold allowed us to reduce the event’s spatial extent and to test the 340 

forecasting skill of NMME models over a range of extremes (the June-August 2003 temperature 341 
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extreme was about 3.5, compared to about 1.7 for the 2012 March event). Based on the limits of 342 

the outlined event (Figure 2), we then compute the domain-averaged time-series of temperature 343 

or precipitation for the given months, from 1983 to 2015 (e.g., for the June-August 2007 344 

temperature event, we have a time series of the June-August temperature anomaly for 1983, for 345 

1984, and every year until 2015). The 95% confidence intervals are computed for the observed 346 

E-OBS anomaly (x) following the approach described in Stedinger et al. (1993, section 18.4.2.) 347 

as   348 

 2*5.01
1

 * 1.96 ± x
n

x  , (10) 349 

where n is the number of years in the E-OBS anomaly time series (here 33 years from 1983 to 350 

2015) and the values represent the upper and lower limits, respectively, of the confidence 351 

interval. 352 

Separately, we obtain the time series of NMME anomalies over the same region, using the same 353 

spatial boundaries (Figure 2). Domain-averaged anomaly time series are computed in the same 354 

manner as for the E-OBS data, but for every lead time. The seasonal forecast is computed as the 355 

sum of the forecasts initialized ahead of the entire season, for each of the eight single-model 356 

ensembles and for the 94 individual model members. Following the approach described in Slater 357 

et al. (2017), the seasonal forecast for a given event, such as the June-July 2010 extreme 358 

precipitation event, initialized in June and lasting for two months, would be computed as the sum 359 

of the 0.5- and the 1.5- month lead forecasts initialized in June. The forecast initialized one 360 

month earlier would be computed as the sum of the 1.5- and the 2.5-month forecasts initialized in 361 

May. Those forecasts are then computed as anomalies for comparison with the E-OBS anomalies 362 

time series. The BU approach is applied separately to the eight single-model ensemble seasonal 363 

forecasts or the 94 individual model member seasonal forecasts. The aim is to investigate how 364 

well the individual NMME models are able to forecast these climate extremes, and whether we 365 

can obtain improved, bias-corrected weighted model forecasts of these extremes over longer lead 366 

times.  367 

4. Results 368 

Using the skill score decomposition described in Section 3.1 to evaluate the predictive skill of 369 
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NMME forecasts, we first measure the skill of the eight single-model ensembles (Section 4.1) 370 

before comparing that of the multi-model ensembles in subsequent sections. EW-8 is used as a 371 

benchmark (Section 4.2) against the two Bayesian models (BU-8 and BU-94 in Section 4.3) and 372 

the two Bayesian models with principal components (BU-PCA-8 and BU-PCA-94 in Section 373 

4.4). Last, we finish by comparing the ability of these different multi-models to forecast a 374 

selection of eight extreme events that occurred in different European regions during the first two 375 

decades of the 21
st
 century.  376 

4.1. The eight single-model ensembles: low skill and high biases 377 

We evaluate the predictive ability of the eight single-model ensembles (computed as the mean of 378 

each model’s members, i.e. the simplest and fastest forecasting approach) through a 379 

decomposition of the skill score into PS, and the two main sources of bias, unconditional and 380 

conditional biases.  381 

Across all four European regions and all lead times, the PS of the precipitation forecasts for 382 

individual months is relatively low, mostly ranging between 0 and 0.1 (Supplementary Figure 383 

1). It tends to be higher at the shortest lead time (~0.2-0.4) for the models with good skill (e.g., 384 

CCSM4, CFSv2), and low, with random variations, across all other lead times. The forecasts are 385 

not markedly better in any given one of the four regions.  386 

The precipitation skill score, or actual skill of the models, is mostly negative as a result of large 387 

unconditional biases, which are systematic errors in the model (i.e., a tendency to over- or under-388 

predict), and tend to be seasonal (e.g., stronger biases in the winter months for CCSM3 and 389 

CCSM4 or stronger in the summer months for GEOS5). Their effect can be seen in the mirror-390 

image between the skill score (blue) and the unconditional biases (red). Thus, the unconditional 391 

bias is clearly the primary source of bias across these eight models, as was also found in Bradley 392 

et al. (2015) and Slater et al. (2017). The conditional biases are also irregularly distributed across 393 

the different months of the year and lead times, and vary substantially from model to model.  394 

The skill of temperature forecasts is also relatively poor across all four regions for individual 395 

months. Compared to precipitation, there is a more pronounced decrease in skill with increasing 396 

lead time, and relatively high forecast skill (>0.5) is obtained by many models at the shortest lead 397 
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time (e.g., CFSv2; Supplementary Figure 2). The best PS tends to be found in the 398 

Mediterranean region during the summer months (e.g., CCSM4, FLORb01, CFSv2). The skill 399 

score is largely driven by the unconditional biases, which vary inconsistently: for some models 400 

like CFSv2, some of the biases grow with increasing lead time, whereas for others, they grow 401 

seasonally (e.g., for GEOS5 biases grow in the cold months for the Humid-Continental and 402 

Subarctic-Polar regions; or in the summer months for the Mediterranean region). The conditional 403 

biases, in contrast, tend to be randomly distributed.  404 

Overall, the eight single-model ensemble forecasts for precipitation and temperature have 405 

relatively little skill beyond the shortest lead times (at the monthly scale), primarily due to the 406 

presence of unconditional biases, which tend to vary by season and lead time. Variations in the 407 

conditional biases also affect the skill score to a much lesser extent. Our aim is therefore to 408 

develop a systematic methodology that will allow us to eliminate these biases by leveraging the 409 

strengths of the different models over specific regions, months, and lead times.  410 

4.2. EW-8: a substantial improvement over the raw forecasts 411 

Our first multi-model takes the arithmetic mean of the eight single-model ensembles (which are 412 

computed as the arithmetic mean of the members; so each single-model ensemble may have 413 

between 6 and 24 members - see Table 1). This model can be thought of as eight equally 414 

weighted GCMs, and thus will be referred to as EW-8. The PS (R
2
) is computed by correlating 415 

this arithmetic mean against the observed values. Previous work has shown that equally weighted 416 

NMME forecasts tend to be as good as or better than those of the best single-model ensemble 417 

(Becker et al., 2014; Slater et al., 2017). Therefore, here we use EW-8 as a ‘least effort’ 418 

benchmark against which to compare subsequent multi-models in sections 4.3-4.5.  For 419 

comparison, we also compute the R
2
 of the raw 94 model members (’94 mem’; see Table 2). For 420 

94 mem, the R
2
 is derived from the correlation between all 94 members and the observation. In 421 

contrast, for EW-8 we first compute the arithmetic mean of the 8 single-model ensembles, before 422 

computing the R
2
 (so there is far less spread in the data).  423 

Results indicate that the EW-8 forecast PS
 
is much better than the raw 94 member PS (the raw 94 424 

members have greater spread and larger conditional biases than the EW-8 averages). We chose 425 

to show the 0.5- and 5.5- month lead times in Table 2 and Figures 3-4 for the sake of parsimony 426 
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and to compare the ‘best’ skill with the skill obtained after several months (once it is no longer 427 

affected by the initial conditions). Across all four regions at the 0.5-month lead time, the mean 428 

precipitation PS increases from R
2
=0.15 for the 94 model members to R

2
=0.38 for EW-8 (color 429 

circles top row of Figure 3; Table 2). A similar improvement can be found for precipitation at 430 

the 5.5-month lead time (94 members R
2
=0.09; EW-8 R

2
=0.27) (Figure 3 and Table 2).  431 

When comparing the precipitation forecast PS of the single-model ensembles across regions, for 432 

a given lead time, we find that the skill tends to be good in the Mediterranean region, but much 433 

poorer in the three other regions (Table 2), where there is greater seasonal variability. At the 0.5-434 

month lead time, the magnitude of the improvement of the forecast skill between the 94 members 435 

and EW-8 (in absolute terms) is best in the Subarctic-Polar region, where the skill was one of the 436 

poorest to begin with. At the 5.5-month lead time, however, the precipitation forecasts have even 437 

larger initial spread and so EW-8 does not perform quite as well (see the Humid-Continental 438 

region). 439 

The temperature forecasts tend to be more skillful than the precipitation forecasts and are 440 

relatively consistent across the four regions, although the skill decreases and becomes more 441 

variable in the cold months (Figure 4). The enhancement between the 94 members and EW-8 442 

forecasts is smaller than for precipitation (e.g., R
2
=0.91 for 94 members, to R

2
=0.96 for EW-8 at 443 

the 0.5-month lead time on average), because there is less room for improvement (Figure 4 and 444 

Table 2). One reason for these high R
2
 values is the ability of the models to reproduce the 445 

seasonality of temperature (e.g., July is warmer than January), so the skill is artificially inflated 446 

when observing all months together (in comparison with the skill that would be achieved on a 447 

month-by-month basis, and which can be seen in Figures 3-5). Hence, in future work, it may be 448 

worth studying the forecasts of anomalies (from their monthly mean) to eliminate the effect of 449 

seasonality.  450 

For both temperature and precipitation, the breakdown of EW-8 in terms of PS and biases 451 

indicates that it performs as well as or better than the best single-model ensemble (Figure 5 vs. 452 

Supplementary Figures 1-2). The PS of the best single-model ensembles (e.g., CFSv2 453 

precipitation) is mostly preserved. The skill score improves slightly (particularly in the 454 

Temperate region) but remains largely negative, indicating that there is still substantial room for 455 
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improvement, namely by tackling the presence of unconditional biases in the model forecasts. 456 

Overall, therefore, EW-8 reduces the conditional biases, preserves the unconditional biases, and 457 

slightly improves the skill score (Figure 5 vs. Supplementary Figures 1-2).   458 

4.3. BU: improved skill and removal of unconditional bias, at the expense of the conditional 459 

biases 460 

Models BU-8 and BU-94 seek to address the issue of the unconditional biases in the models (i.e., 461 

the primary source of bias) by using the (unbiased) climatological distribution as a prior, and 462 

updating it (so the lack of bias is preserved). For precipitation, BU-8 clearly eliminates much of 463 

the single-model bias (see the first and second rows of each panel; Figure 3). The forecasts are 464 

sharply re-centered around the one-to-one line, particularly in the two regions with the strongest 465 

biases, Humid-Continental and Subarctic-Polar. When the bias is small, such as in the 466 

Mediterranean region, the bias removal is less noticeable, and BU-8 actually performs less well 467 

than EW-8 (Table 2). The PS is generally a little better in BU-8 than BU-94 (especially for 468 

longer leads); however the unconditional bias removal (SME) is better in BU-94 (Figure 5). 469 

For temperature, the effect of BU-8 and BU-94 is similar, as the forecasts for each of the 12 470 

months clearly re-center around the one-to-one line (Figure 4). The adjustment is most visible 471 

for the months that had the largest variability and error to begin with, such as the cold months 472 

(dark blue circles). However, the PS is not improved when all months are considered together 473 

(Table 2).  474 

The skill score of BU-8 and BU-94 is notably ‘smoothed out’ in comparison with EW-8 (Figure 475 

5) due to the unconditional bias removal. The BU conditional biases, however, are slightly worse 476 

than those of the eight single-model ensembles (Figure 5 vs. Supplementary Figures 1-2). 477 

Because the BU models are based on the questionable assumption of independence across 478 

models, it is likely that the forecasts may be overconfident in comparison with the EW-8 479 

forecasts. Thus, in BU-8 and BU-94, most of the bias is conditional, as is clearly visible in the 480 

mirror-image between the skill score and the SREL in Figure 5.  481 

We hypothesize that the increase in conditional biases in BU-8 and BU-94 is due to the lack of 482 

independence among model forecasts. Models that behave similarly, such as CCSM3 and 483 
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CCSM4, or CanCM3 and CanCM4, will tend to produce overconfidence for specific months and 484 

lead times when the models concur, because all of the models are treated equally in the 485 

reweighting scheme. Therefore, we develop a multi-model based on PCA that will transform the 486 

potentially correlated forecasts from the eight single-model ensembles (or 94 individual model 487 

members) into a new set of linearly uncorrelated components, before conducting the BU.     488 

4.4. BU-PCA: effectively removes negative skill but at the expense of positive skill  489 

Instead of applying the weights on a model-by-model basis, we compute the principal 490 

components among the eight single-model ensembles (BU-PCA-8) and among the 94 model 491 

members (BU-PCA-94). For every lead time and every month, the model forecasts are pooled 492 

together across the entire forecast period (1982-2015), and the BU procedure is applied to the 493 

principal components, as described in Section 3.3. The scatterplots of the resulting forecasts 494 

(fourth and fifth rows in each panel in Figures 3-4) show that both BU-PCA models tend to re-495 

center the forecasts around the one-to-one line, in the same manner as the two BU models 496 

(second and third rows), but they also “flatten” the forecast variance considerably (horizontally). 497 

The PCA procedure thus appears to reduce the conditional biases (compared to BU-8 and BU-498 

94) by removing any overconfidence arising from similarities among single model ensemble 499 

forecasts (i.e., instead of applying BU to every model/member, it is applied to the principal 500 

components). Compared with EW-8, BU-PCA-8 and BU-PCA-94 still have slightly greater 501 

conditional biases (Figure 5) but the unconditional biases are notably reduced. Following the 502 

reduction of biases, the skill score of the BU-PCA models mirrors the PS much more closely 503 

than in EW-8, so there is less ‘room for improvement’ left in the difference between the PS and 504 

the skill score (Figure 5).  505 

We compare the BU-PCA-8 and BU-PCA-94 forecasts to determine whether it is “worth” using 506 

all of the individual model members when producing a weighted model forecast. Our reasoning 507 

is that the use of individual members is likely to heighten model skill through the addition of 508 

new forecast signals (DelSole et al., 2014) while the use of single-model ensemble forecasts is 509 

more likely to impoverish the signal (Knutti et al., 2010). Interestingly, we find that at the 510 

shortest lead times (0.5-month lead), the PS of BU-PCA-8 is consistently better than that of BU-511 

PCA-94. At the 5.5-month lead time, however, the reverse holds. These results suggest that when 512 
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there is greater uncertainty in the model forecast (i.e., at longer lead times), it may be better to 513 

use all the model members than the single-model ensembles, within the BU-PCA approach 514 

(Table 2).   515 

Thus, the five multi-models each have different biases: those in EW-8 are primarily 516 

unconditional; those of the two BU models are primarily conditional; and those of the two BU-517 

PCA models the biases are relatively small and random, while the strong negative values in the 518 

skill score are virtually eliminated. 519 

4.5. Skill of the five multi-models in forecasting extreme precipitation and temperature 520 

events 521 

As a test of the ability of the five multi-models to predict extreme climate, we evaluate the 522 

magnitude of precipitation and temperature forecast anomalies for four extreme temperature and 523 

four extreme precipitation events (Figure 6). Previously, we found that the eight single-model 524 

ensembles were unable to forecast extreme precipitation and climate more than several months 525 

ahead of an extreme event’s occurrence in different regions of the continental USA (Slater et al., 526 

2017). Here, the 94 individual model members (grey lines) also tend to fluctuate between 527 

extremely high and low anomalies, with temperature and precipitation performing similarly. The 528 

94 members rarely attain the observed anomaly, particularly when the anomaly is greater than 3. 529 

Even when they do, the forecasts appear to be random and rarely persist several months ahead of 530 

the event (e.g., 2002 August precipitation).  531 

So how well do the five multi-models perform in comparison with the 94 individual model 532 

members? EW-8 (black line) is mediocre: it tends to forecast the sign of the anomaly correctly, 533 

but largely under-predicts the magnitude (Figure 6). BU-8 (magenta) and BU-94 (green) do 534 

better in estimating the magnitude of the anomaly (particularly for temperature), but are more 535 

likely to get the sign wrong. Thus, BU-8 is arguably less consistent than EW-8, likely because 536 

the single-model ensembles are treated independently, so any similarities among the models are 537 

over-strengthened (Olson et al., 2016), even when they are incorrect. BU-PCA-8 and BU-PCA-538 

94 are both very inconsistent (especially BU-PCA-94), with abrupt variations from one lead time 539 

to the next, possibly because the BU-PCA approach brings the resulting forecasts closer to the 540 

climatological mean.  541 
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Overall, the skill of our multimodels is similar to that of other multi-model weighting techniques 542 

such as equal weights (Becker et al., 2014; Hagedorn et al., 2005; Slater et al., 2017), multiple 543 

linear regression (Doblas-Reyes et al., 2005), other Bayesian-based approaches (Rajagopalan et 544 

al., 2002; Robertson et al., 2004; Weigel et al., 2008), optimal weights (Wanders and Wood, 545 

2016; Weigel et al., 2008) or genetic algorithms (Ahn and Lee, 2016). However, it is difficult to 546 

compare these multi-models in detail as most have been applied over different spatial and 547 

temporal resolutions, and often verified using different evaluation metrics. Overall, these results 548 

suggest that the ‘conservative’ approach would be to stick with the EW-8 model, which is both 549 

the fastest and simplest model forecast to produce. 550 

5. Conclusions 551 

We have evaluated the skill of eight NMME models and different weighting schemes in 552 

forecasting temperature and precipitation across Europe over the 1982-2015 period. The main 553 

findings of this paper can be summarized as follows:  554 

 Individually, the eight single-model ensembles have little forecasting skill beyond the 555 

shortest lead times, primarily because of the large unconditional biases in the models, which 556 

vary seasonally. The conditional biases have less influence on the forecast skill because they 557 

tend to be irregularly distributed across the different months of the year and lead times.  558 

 EW-8 is a simple, but effective method for improving forecast skill by taking the arithmetic 559 

mean of the single-model ensembles. EW-8 reduces the conditional biases, preserves the 560 

unconditional biases, and slightly improves the skill score and PS of the eight single-model 561 

ensembles. Overall, however, the skill score remains negative, so there is still vast room for 562 

improvement. 563 

 BU-8 and BU-94 both homogenize model skill scores slightly across all lead times and 564 

forecast months by removing the unconditional biases. However, they do this at the expense 565 

of the conditional biases, which are accentuated in comparison with EW-8 (likely due to 566 

overfitting and/or model similarity). The improvements are most notable in the regions and 567 

months that exhibit the strongest biases to begin with.  568 
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 BU-PCA-8 and BU-PCA-94 transform the potentially correlated forecasts from the eight 569 

single-model ensembles and from the 94 individual model members into a new set of 570 

linearly uncorrelated components, before conducting the BU. In comparison with the two 571 

BU models, their unconditional biases are similar and the conditional biases are reduced. It 572 

appears overall that the principal components approach fixes the lack of independence 573 

across models, but brings the resulting forecasts closer to the climatological mean. In 574 

comparison with EW-8, the skill score is much more homogeneous (negative skill is 575 

dramatically reduced) but there is also some loss of skill.  576 

Our results suggest that there is not much to be gained by using the full information provided by 577 

the 94 individual model members, in comparison with the single model ensembles (which take 578 

the mean of each model’s members). In fact, the equally weighted (EW-8) model is 579 

considerably faster to compute than any other multi-model, and in the case of extreme 580 

precipitation and temperature events, its forecasts are more conservative, but less prone to major 581 

errors. Other studies have found that considerable skill improvement can be obtained using 582 

optimal weights (Wanders and Wood 2016) and in our case it remains to be determined in 583 

future work how the BU-PCA approach may be improved.  584 
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Figures and tables 746 

 747 

 748 

Figure 1. Map of the four biophysical European regions used 749 

in the study. Region outlines are based on similar Köppen climate 750 

regions and then tailored to the grid cells of the NMME/E-OBS 751 

data (E-OBS data are regridded to the same resolution as NMME 752 

data, see Section 2). The Temperate region is based on Köppen 753 

categories Cwa-c and Cfa-c; the Subarctic-Polar region is based on 754 

Dfc,d, Dwc, Dsc,d, ET, and EF; the Mediterranean region is based on 755 

Csa,b; and the Humid-Continental region is based on Dfa,b, Dwa,b, 756 

and Dsa,b (see Peel et al. (2007)). 757 

 758 
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 759 

Figure 2. Location of four extreme precipitation and four 760 

extreme temperature events across continental Europe. The 761 

spatial extent of each event is indicated with a thick black outline, 762 

and the magnitude of the climatological anomaly is displayed as 763 

yellow/red shades (with darker reds indicating greater anomalies). 764 

The anomaly is computed on a pixel-by-pixel level at the monthly 765 

or seasonal scale across Europe. Extreme precipitation events are 766 

shown across the top row: August 2002, August 2005, May-June 767 

2010, May-June 2013. Extreme temperature events are displayed 768 

across the bottom row: June-August 2003, June-July 2007, June-769 

July 2010 and March 2012.  770 
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 771 

 772 

Figure 3. Comparison of the NMME precipitation forecasts 773 

before and after multi-model weighting for the 0.5 lead time 774 
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(top panel) and the 5.5 lead time (bottom panel). For each of the 775 

four regions (columns), five types of weighting procedures are 776 

compared (rows): equal weights of the eight single-model 777 

ensembles (EW-8), BU of the eight single-model ensembles (BU-778 

8), BU of the 94 model members (BU-94), BU of the principal 779 

components of the eight single-model ensembles (BU-PCA-8), and 780 

BU of the principal components of the 94 model members (BU-781 

PCA-94). Grey background circles indicate the pooled forecasts 782 

from the 94 individual model members (i.e., no distinction is made 783 

among the different model members in the figure). Color circles 784 

represent the different months of the year, ranging from winter 785 

(blue) to summer (red). The one-to-one line is shown in the 786 

foreground to highlight the biases in the different approaches. 787 

788 
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 789 

 790 

Figure 4. Same as Figure 3 but for temperature. 791 

 792 
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 793 
Figure 5. Summary color maps comparing the skill of the five 794 
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multi-models for precipitation (left column) and temperature 795 

(right column) forecasts. The skill is shown for five multi-models 796 

computed using a) Equal weights of the eight single-model 797 

ensembles (EW-8, row 1), b) BU of the eight single-model 798 

ensembles (BU-8, row 2), c) BU of the 94 model members (BU-799 

94, row 3), d) BU of the principal components of the eight single-800 

model ensembles (BU-PCA-8, row 3), and e) BU of the principal 801 

components of the 94 model members (BU-PCA-94, row 4). The 802 

potential skill, skill score, unconditional biases (SME) and 803 

conditional biases (SREL) (rows) are shown for all four European 804 

regions (columns), lead times (x-axes) and months of the year (y-805 

axes). Colors range from negative (blue shades) to neutral (white 806 

shades) to positive (red shades). 807 

808 
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 809 

Figure 6. Skill of the 94 NMME model members (grey lines) 810 

and of the five multi-models (color lines) in predicting eight 811 

individual extreme precipitation/ temperature events, against 812 

the observed climatology. The extreme precipitation and 813 

temperature events are the same as those represented in Figure 2. 814 

The horizontal black line indicates the observed E-OBS 815 

climatological anomaly, together with the 95% confidence 816 

intervals (grey areas; see Section 3.4). The anomalies forecast by 817 

the 94 individual model members are indicated as thin grey lines in 818 

the background. The anomalies of the five multi-models are shown 819 

in black (EW-8), magenta (BU-8), green (BU-94), blue (BU-PCA-820 

8) and red (BU-PCA-94). Note that not necessarily all 94 members 821 

are always present (some models have gaps, so the multi-models 822 

are computed using the available data). 823 

824 
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Table 1. Characteristics of the eight NMME models. The 825 

available period does not reflect the presence of gaps in the 826 

forecasts. The number of ensemble members indicates the largest 827 

number of members per GCM and is not reflective of missing data 828 

for one or more members. The 0.5-lead time is the shortest 829 

available lead time and refers to the forecast for a month issued at 830 

the beginning of the month itself (e.g., the 0.5 lead time forecast 831 

for January 2000 is issued at the beginning of January 2000). 832 

NMME Phase I and Phase II refer to the timescales of the NMME 833 

project. The Phase I project was funded in 2011 by NOAA; Phase 834 

II was funded in 2012-2013 as an inter-agency project by NOAA, 835 

the National Science Foundation, the Department of Energy and 836 

NASA. New variables and models were released as part of Phase 837 

II, and were made available in 2014.  838 

Model name Modeling Center 
Available 

Period 

Ensemble 

Size 

Lead 

Times 

(months) 

NMME 

Phase I 

NMME 

Phase 

II 

CCSM3 (version 3) NCAR / COLA / RSMAS 1982 - Present 6 0.5 – 11.5 ✓  

CCSM4 (version 4 – subset of 

CESM) 
NCAR / COLA / RSMAS  1982 - Present 10 0.5 – 11.5  ✓ 

CanCM3 (3rd Generation) CMC 1981 - Present 10 0.5 – 11.5 ✓ ✓ 

CanCM4 (4th Generation) CMC  1981 - Present 10 0.5 – 11.5 ✓ ✓ 

CFSv2 (version 2) NOAA / NCEP 1982 – Present  
28 (24 used; 4 

incomplete) 
0.5 – 9.5 ✓ ✓ 

GEOS5 (version 5) NASA / GMAO 1981 - Present 12 0.5 – 8.5 ✓ ✓ 

GFDL2.1 (version 2.1) NOAA / GFDL 1982 - Present 10 0.5 – 11.5 ✓  

FLORb01 (version 2.5) NOAA / GFDL  1982 - Present 12 0.5 – 11.5  ✓ 

Model and modeling center acronyms  

CanCM Canadian Coupled Global Climate Model 

CESM   NCAR’s Community Earth System Model (successor of CCSM) 

CCSM   Community Climate System Model 

CFS       Climate Forecast System 

COLA    Center for Ocean–Land–Atmosphere Studies  

CMC      Environment Canada’s Meteorological Service of Canada - Canadian Meteorological Centre   

GEOS    Goddard Earth Observing System Model 

GFDL     NOAA’s Geophysical Fluid Dynamics Laboratory  

GMAO   NASA’s Global Modeling and Assimilation Office  

IRI         International Research Institute for Climate and Society, part of Columbia University’s Earth Institute 

NCAR    National Center for Atmospheric Research 

NCEP     NOAA’s National Centers for Environmental Prediction  

NASA     National Aeronautics and Space Administration  

NCAR     National Center for Atmospheric Research  

NOAA    National Oceanic and Atmospheric Administration 

RSMAS  Rosenstiel School for Marine and Atmospheric Science, University of Miami 

 839 

840 
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Table 2. Coefficients of determination (R
2
) for the 94 841 

individual model members (‘94 mem’) and the five multi-842 

models, when pooling forecasts for all months against E-OBS 843 

observed data (1982-2015). These R
2
 values correspond to the grey 844 

and color scatter plots shown in Figures 3 and 4. See Section 4.2 845 

for a discussion of the difference between 94 mem and EW-8. 846 

  

0.5-month lead time  5.5-month lead time 

  

RAW: 

94 

mem. 

EW-8 BU-8 BU-94 
BU-

PCA-8 

BU-

PCA-94 

 

RAW: 

94 

mem. 

EW-8 BU-8 BU-94 
BU-

PCA-8 

BU-

PCA-94 

P
r
e
c
i
p

i
t
a
t
i
o

n
 

Temperate 0.11 0.29 0.30 0.29 0.31 0.25 
 

0.07 0.23 0.16 0.12 0.17 0.24 

Mediter-
ranean 

0.40 0.71 0.68 0.68 0.70 0.69 
 

0.24 0.59 0.54 0.48 0.57 0.60 

Humid-
Continental 

0.03 0.13 0.36 0.37 0.36 0.30 
 

0.01 0.03 0.22 0.16 0.23 0.27 

Subarctic-
Polar 

0.07 0.39 0.38 0.39 0.38 0.33 
 

0.04 0.24 0.23 0.21 0.23 0.27 

Means 0.15 0.38 0.43 0.43 0.44 0.39 
 

0.09 0.27 0.29 0.24 0.30 0.34 

T
e
m

p
e
r
a
t
u

r
e
 

Temperate 0.90 0.95 0.95 0.95 0.96 0.95 
 

0.87 0.93 0.92 0.92 0.93 0.94 

Mediter-
ranean 

0.95 0.98 0.98 0.98 0.98 0.98 
 

0.92 0.98 0.97 0.97 0.97 0.98 

Humid-
Continental 

0.91 0.96 0.96 0.96 0.96 0.96 
 

0.87 0.94 0.94 0.94 0.94 0.94 

Subarctic-
Polar 

0.87 0.95 0.95 0.95 0.96 0.95 
 

0.83 0.93 0.91 0.92 0.92 0.93 

Means 0.91 0.96 0.96 0.96 0.97 0.96 
 

0.87 0.94 0.94 0.94 0.94 0.95 
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